Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity
نویسندگان
چکیده
The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à-brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages.
منابع مشابه
Cis-regulatory evolution integrated the Bric-à-brac transcription factors into a novel fruit fly gene regulatory network
Gene expression evolution through gene regulatory network (GRN) changes has gained appreciation as a driver of morphological evolution. However, understanding how GRNs evolve is hampered by finding relevant cis-regulatory element (CRE) mutations, and interpreting the protein-DNA interactions they alter. We investigated evolutionary changes in the duplicated Bric-à-brac (Bab) transcription facto...
متن کاملThe Evolutionary Origination and Diversification of a Dimorphic Gene Regulatory Network through Parallel Innovations in cis and trans
The origination and diversification of morphological characteristics represents a key problem in understanding the evolution of development. Morphological traits result from gene regulatory networks (GRNs) that form a web of transcription factors, which regulate multiple cis-regulatory element (CRE) sequences to control the coordinated expression of differentiation genes. The formation and modi...
متن کاملGenetic Changes to a Transcriptional Silencer Element Confers Phenotypic Diversity within and between Drosophila Species
The modification of transcriptional regulation has become increasingly appreciated as a major contributor to morphological evolution. However, the role of negative-acting control elements (e.g. silencers) in generating morphological diversity has been generally overlooked relative to positive-acting "enhancer" elements. The highly variable body coloration patterns among Drosophilid insects repr...
متن کاملCharacterization of cis-regulatory elements controlling repo transcription in Drosophila melanogaster.
The glial cells missing (gcm) gene has been identified as a "master regulator" of glial cell fate in the fruit fly Drosophila. However, gcm is also expressed in and required for the development of larval macrophages and tendon cells. Thus, the Gcm protein activates the transcription of different sets of genes in different developmental contexts. How the Gcm protein regulates these different out...
متن کاملThe Same Regulatory Point Mutation Changed Seed-Dispersal Structures in Evolution and Domestication
It is unclear whether gene regulatory changes that drive evolution at the population and species levels [1-3] can be extrapolated to higher taxonomic levels. Here, we investigated the role of cis-regulatory changes in fruit evolution within the Brassicaceae family. REPLUMLESS (RPL, At5g02030) controls development of the replum, a structure with an important role in fruit opening and seed disper...
متن کامل